54 research outputs found

    Unmanned Aircraft System Assessments of Landslide Safety for Transportation Corridors

    Get PDF
    An assessment of unmanned aircraft systems (UAS) concluded that current, off-the-shelf UAS aircraft and cameras can be effective for creating the digital surface models used to evaluate rock-slope stability and landslide risk along transportation corridors. The imagery collected with UAS can be processed using a photogrammetry technique called Structure-from-Motion (SfM) which generates a point cloud and surface model, similar to terrestrial laser scanning (TLS). We treated the TLS data as our control, or “truth,” because it is a mature and well-proven technology. The comparisons of the TLS surfaces and the SFM surfaces were impressive – if not comparable is many cases. Thus, the SfM surface models would be suitable for deriving slope morphology to generate rockfall activity indices (RAI) for landslide assessment provided the slopes. This research also revealed that UAS are a safer alternative to the deployment and operation of TLS operating on a road shoulder because UAS can be launched and recovered from a remote location and capable of imaging without flying directly over the road. However both the UAS and TLS approaches still require traditional survey control and photo targets to accurately geo-reference their respective DSM.List of Figures ...................................................................................................... vi List of Abbreviations ......................................................................................... vii Acknowledgments ................................................................................................ x Executive Summary ............................................................................................. xi CHAPTER 1 INTRODUCTION .......................................................................... 1 CHAPTER 2 LITERATURE REVIEW ................................................................ 4 2.1 Landslide Hazards .................................................................................... 4 2.2 Unmanned Aircraft Systems Remote Sensing.......................................... 6 2.3 Structure From Motion (SfM) .................................................................. 7 2.4 Lidar terrain mapping ............................................................................... 8 CHAPTER 3 STUDY SITE/DATA .................................................................. 11 CHAPTER 4 METHODS ................................................................................ 13 4.1 Data Collection ............................................................................................. 13 4.1.1 Survey Control ..................................................................................... 14 4.1.2 TLS Surveys ........................................................................................ 16 4.1.3 UAS Imagery ....................................................................................... 17 4.1.4 Terrestrial Imagery Acquisition ........................................................... 19 4.2 Data Processing ............................................................................................ 20 4.2.1 Survey Control ..................................................................................... 20 4.2.2 TLS Processing .................................................................................... 20 4.2.3 SfM Processing .................................................................................... 21 4.2.4 Surface Generation .............................................................................. 22 4.3 Quality Evaluation ........................................................................................ 23 4.3.1 Completeness ....................................................................................... 23 4.3.2 Data Density/Resolution ...................................................................... 23 4.3.3 Accuracy Assessment .......................................................................... 23 4.3.2 Surface Morphology Analysis ............................................................. 24 4.2.6 Data Visualization ............................................................................... 25 CHAPTER 5 RESULTS ................................................................................. 27 v 5.1 UTIC DSM evaluation.................................................................................. 27 5.1.1 Completeness evaluation ..................................................................... 28 5.1.2 Data Density Evaluation ...................................................................... 29 5.1.3 Accuracy Evaluation............................................................................ 30 5.2 Geomorphological Evaluation ...................................................................... 32 CHAPTER 6 DISCUSSION ............................................................................ 35 6.1 Evaluation of UAS efficiencies .................................................................... 35 6.2 DSM quality and completeness .................................................................... 37 6.3 Safety and operational considerations .......................................................... 37 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS ................................ 40 7.1 Technology Transfer..................................................................................... 41 7.1.1 Publications ......................................................................................... 41 7.1.2 Presentations ........................................................................................ 42 7.1.3 Multi-media outreach .......................................................................... 43 6.4 Integration of UAS and TLS data ................................................................. 44 REFERENCES .............................................................................................. 4

    Workshop on Raising Data using the RDBES and TAF (WKRDBESRaiseTAF; outputs from 2022 meeting)

    Get PDF
    41 pĂĄginasThe Workshop on Raising Data using the RDBES and TAF (WKRDBES-Raise&TAF) met online (26–30 of September 2022) to evaluate the use of the Regional Database and Estimation System (RDBES) format to reproduce the 2022 InterCatch input and output, identifying a Transparent Assessment Framework (TAF) structure to organize the intermediate steps and to propose standardized output formats. The main outcomes of WKRDBES-Raise&TAF were: · RDBES provides sufficient support for current national estimation protocols. However, some minor issues were reported that hampered an exact reproduction of the estimates. Therefore, adaptations of the data model should not be excluded completely. · All the input to stock assessment that InterCatch currently provides, could be reproduced. The participants started from the current stock extracts that can be downloaded from InterCatch. · A workflow was proposed with a national TAF repository for each country, a stock estimation repository and a stock assessment repository. The intermediate output of those repositories will be stored in an ‘intermediate output database’ and depending on the user role, you will get access to the relevant stages in this workflow. · The following requirements for the standard output formats were defined: they cannot be more restrictive than the InterCatch input and output format; they should present measures of uncertainty and sample sizes (for national estimates) and should have a configurable domain definition (for national estimates). Despite those successful outcomes, the current plan for transition to an operational system was concluded to be too optimistic. WKRDBES-Raise&TAF therefore recommends to the Working Group on Governance of the Regional Database and Estimation System (WGRDBESGOV) to revise the roadmap and allow RDBES to be in a test phase also for 2023. WKRDBES-Raise&TAF felt the need to test the proposed workflow on a small scale and therefore recommends to the WGRDBESGOV to arrange a workshop where two stocks (pok.27.3a46 (Saithe (Pollachius virens) in Subareas 4, 6 and Division 3.a (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat) and wit.27.3a47d (Witch (Glyptocephalus cynoglossus) in Subarea 4 and Divisions 3.a and 7.d (North Sea, Skagerrak and Kattegat, eastern English Channel)) will be set up to go through the whole flow.Peer reviewe

    Effets de site, endommagement et Ă©rosion des pentes dans les zones Ă©picentrales des chaĂźnes de montagnes actives

    Get PDF
    Landslides are a major natural hazard that cause significant damages and casualties to people. Earthquakes are one of their main triggers in active mountain belts. In epicentral area, the passage of seismic-waves that disrupt the stress-field, leads the slope stability threshold to be exceeded. Co-seismic slope failure probability thus depends on complex interactions between the ground-motion and the slope geology and geometry. A few seismic data are available on mountain slopes and the resolution of ground-motion models is generally low. Yet strong variation of ground-motion from one ridge to another can be felt due to site effects. We document site effects across topography and show the complexity of slope responses to earthquakes using a seismic network set across a Taiwanese ridge. Six broadband seismometers were set along the profile of this 3km wide ridge. From March 2015 to June 2016, more than 2200 earthquakes (magnitude Ml>3 and hypocentral distance3, distance hypocentrale<200km). Bien que distants de quelques centaines de mĂštres, les sites prĂ©sentent tous une rĂ©ponse qui leur est caractĂ©ristique rĂ©sultant d’une combinaison complexe entre la topographie et la gĂ©ologie du site. A frĂ©quences modĂ©rĂ©es, correspondant Ă  des longueurs d’ondes du mouvement pouvant contribuer au dĂ©clenchement de glissements de terrain, l’amplification du mouvement sismique est principalement due Ă  la gĂ©ologie locale et non Ă  la topographie, comme montrĂ© par les indicateurs classiques (SSR, PGA, PGV et Arias) extraits des rĂ©ponses des stations aux sĂ©ismes. La topographie semble nĂ©anmoins jouer un rĂŽle dans la durĂ©e du mouvement sismique fort aux stations situĂ©es sur les crĂȘtes et en bordure de bassin sĂ©dimentaire, par effet de rĂ©sonance et gĂ©nĂ©ration d’ondes de surface. La contribution prĂ©dominante de la gĂ©ologie dans le dĂ©clenchement des glissements de terrain sismo-induits est Ă©galement montrĂ©e par l’analyse de leur position sur les versants pour les glissements associĂ©s aux sĂ©ismes de Northridge (Mw 6.7, 1994, Etats-Unis), de Chi-Chi (Mw 7.6, 1999, Taiwan), et de Wenchuan (Mw 7.9, 2008, Chine). En effet, bien que les glissements sismo-induits se localisent statistiquement plus haut sur les versants que les glissements d’origine climatique, on note que cette tendance est fortement modulĂ©e par la gĂ©ologie des bassins. En fonction des « attracteurs », tels que des failles ou forts contrastes lithologiques, prĂ©sents dans les bassins, les glissements tendent Ă  se dĂ©clencher plus ou moins haut sur les versants, lĂ  oĂč le potentiel de rupture est plus fort. Les propriĂ©tĂ©s mĂ©caniques des pentes sont peu contraintes dans les zones montagneuses. Souvent leurs paramĂštres gĂ©otechniques sont estimĂ©s Ă  partir des cartes gĂ©ologiques rĂ©gionales, or ils peuvent varier fortement pour une mĂȘme lithologie d’un bassin Ă  un autre. En considĂ©rant un modĂšle frictionnel simple de stabilitĂ© des pentes, on propose d’inverser des paramĂštres de type Coulomb Ă  partir de la distribution des pentes des glissements de terrain sismo-induits Ă  l’échelle des bassins dans les zones Ă©picentrales des sĂ©ismes de Northridge, Chi-Chi et Wenchuan. La variation spatiale de ces paramĂštres semble cohĂ©rente avec celle de la lithologie et la profondeur des sols

    Topographic site effects, weakening and erosion in seismically active mountain belt

    No full text
    Les glissements de terrain constituent un risque naturel majeur Ă  l’origine de dĂ©gĂąts matĂ©riels et humains considĂ©rables. Les sĂ©ismes sont l’une des principales causes de leur dĂ©clenchement dans les orogĂšnes actifs. Dans la zone Ă©picentrale, le passage des ondes sismiques perturbe le champs de contraintes local ce qui peut provoquer le dĂ©passement du seuil de stabilitĂ© des versants. La probabilitĂ© de dĂ©clenchement d’un glissement de terrain sismo-induit sur une pente donnĂ©e est donc fonction de facteurs liĂ©s au mouvement du sol et aux caractĂ©ristiques gĂ©ologiques et topographiques de celle-ci. TrĂšs peu de donnĂ©es sismiques sont disponibles sur les versants et les modĂšles d’interpolation sont peu prĂ©cis. Or le mouvement sismique peut s’avĂ©rer trĂšs variable Ă  l’échelle d’un bassin du fait de la prĂ©sence d’effets de site. L’étude de la rĂ©ponse sismique d’un relief taĂŻwanais nous permet de documenter ces effets et de prendre connaissance de la complexitĂ© du mouvement enregistrĂ© sur ce relief Ă  la suite du passage de l’onde. Un rĂ©seau de six stations larges-bandes a Ă©tĂ© dĂ©ployĂ©, au travers de ce relief large d’environ 3km. Entre mars 2015 et juin 2016, ce rĂ©seau a permis d’enregistrer la rĂ©ponse des sites Ă  plus de 2200 sĂ©ismes rĂ©gionaux (magnitude Ml>3, distance hypocentrale3 and hypocentral distance<200km) were recorded. Although the sites are within a distance of hundreds of meters they all show different characteristic responses that are related to a complex combination of the geology and topography of the sites. At medium frequency corresponding to groundmotion wavelength that could affect slope stability, the ground-motion amplification is mostly related to the local geology and the topographic effect seems relatively negligible as attested by current indicators measured at the stations (PGA, PGV, Arias, SSR). However the duration of strong ground-motion at the ridge crests and slope toe seems to be related to possible resonance effects and surface wave generation due to the geometry of the topography. The strong contribution of the geology to co-seismic landslide trigger is demonstrated by the analysis of their position along hillslopes for the co-seismic landslides triggered by the Northridge earthquake (Mw 6.7, 1994, USA), the Chi-Chi earthquake (Mw 7.6, 1999, Taiwan), and the Wenchuan earthquake (Mw 7.9, 2008, China). Indeed, although co-seismic landslides are statistically located higher on hillslopes than the rainfall-induced landslides, we show that this tendency is strongly modulated by the geology. According to the “potential landslides attractiveness” of geological structures, such as faults or lithological contrasts, present in the watershed, the slope failure would occur more or less upslope, where the failure probability is the highest.Slope mechanical properties are not well constrained in mountain area. Their geotechnical parameters are usually estimated using information provided by geological maps, but even for the same lithology they can strongly differ for one basin to another. Considering one simple friction model for seismic slope stability, we propose to invert Coulomb related parameters using the slope distributions of the landslides triggered by the Northridge, Chi-Chi and Wenchuan earthquakes. The spatial variation of these parameters seems to be in agreement with the lithology and soil depth at the first order

    Evaluation des pratiques professionnelles (Mise en place et évaluation d'un protocole de sevrage de ventilation mécanique dans le service de réanimation respiratoire du centre hospitalo-universitaire d'Amiens)

    No full text
    Introduction : Le sevrage de la ventilation mécanique (VM) est un processus important puisqu il représente 40% à 50% du temps total de la ventilation. Hors celle-ci est souvent prolongée de maniÚre inutile puisque 50% des patients auto-extubés ne nécessitent pas de réintubation. La mise en place de protocole de sevrage de VM dans différents services de réanimation a montré son efficacité sur la diminution du temps de ventilation et donc sur ses complications. C est pourquoi un protocole de sevrage de ventilation mécanique a été mis en place dans le service de réanimation aprÚs évaluation des pratiques professionnelles. Matériel et méthodes : Nous avons réalisé une étude cas-témoin (54 patients, 27 patients avant la mise en place du protocole et 27 aprÚs mise en place du protocole) monocentrique dont l objectif principal était d évaluer si la mise en place sur les six premiers mois, d un protocole de sevrage de ventilation mécanique dans notre service permettait de diminuer la durée de sevrage de ventilation mécanique et le nombre d échecs d extubation. Résultats : Nous n avons pas mis en évidence sur notre petite cohorte (27 vs 27 patients) de différence significative en terme de durée de sevrage avant et aprÚs mise en place du protocole (5j vs 4j, p= 0,53) ni en terme d échec d extubation. Cependant, cette étude a mis en évidence l importance d un test de ventilation spontanée quotidien (VS AI 7 cm d H2O) permettant de réduire la durée de sevrage de VM (4 vs 2 jours si le test est réalisé à J1 et à J2, respectivement p=0,0056 et p=0,001). De plus les facteurs prédictifs de sevrage difficile tels que : la BPCO, un score de gravité élevé à l entrée ou une durée de VM supérieure à 7 jours avant le début du sevrage ont été retrouvés. Conclusion : Cette étude n a pas permis de mettre en évidence de différence significative avant et aprÚs mise en place du protocole, en terme de durée de sevrage, compte tenu de notre faible effectif. Cependant, l application systématique d un test en VS quotidien pourrait permettre d améliorer la durée de ventilation mécanique.Background: The mechanical ventilation (MV) weaning is an important period, which corresponds to 40 to 50% of total mechanical ventilation period. This weaning period is often useless extended because 50% of patients with self-extubation don t require a new intubation. The use of weaning protocol in different intensive care units has proved its efficiency to reduce weaning period duration and so to decrease mechanical ventilation complications. That s why, a weaning protocol has been set in our intensive care unit after an evaluation of our habits. Methods: We conducted a case control study (54 patients, 27 patients before setting the protocol and 27 after) in one center. The objective was to evaluate after 6 months of protocol if our new weaning protocol could decrease the weaning period duration and reduce the weaning failure rate. Results: We didn t find a decrease of weaning period duration (5 days vs 4 days, p= 0,53), nor weaning failure rate in our small cohort (27 vs 27 patients). But, we have shown the importance of a daily spontaneous ventilation test (with inspiratory pressure of 7 cm of H2O). This spontaneous ventilation test the first and second day of weaning period could decrease the weaning period duration (4 vs 2 days, p=0,0056 and p=0,001 respectively for D1 and D2). We assessed that COPD, severity at admission (SAPS 2) or MV duration before weaning higher than 7 days were predictive factors of difficult weaning. Conclusion : This study failed to show a possible decrease of weaning period duration decrease, possibly due to its small population. But, we could probably improve the weaning period duration with a systematic daily test of spontaneous ventilation.AMIENS-BU Santé (800212102) / SudocSudocFranceF

    Seismic and geologic controls on spatial clustering of landslides in three large earthquakes

    No full text
    International audienceThe large, shallow earthquakes at Northridge, California (1994), Chi-Chi, Taiwan (1999), and Wenchuan, China (2008), each triggered thousands of landslides. We have determined the position of these landslides along hillslopes, normalizing for statistical bias. The landslide patterns have a co-seismic signature, with clustering at ridge crests and slope toes. A cross-check against rainfall-induced landslide inventories seems to confirm that crest clustering is specific to seismic triggering as observed in previous studies. In our three study areas, the seismic ground motion parameters and lithologic and topographic features used do not seem to exert a primary control on the observed patterns of landslide clustering. However, we show that at the scale of the epicentral area, crest and toe clustering occur in areas with specific geological features. Toe clustering of seismically induced landslides tends to occur along regional major faults. Crest clustering is concentrated at sites where the lithology along hillslopes is approximately uniform, or made of alternating soft and hard strata, and without strong overprint of geological structures. Although earthquake-induced landslides locate higher on hillslopes in a statistically significant way, geological features strongly modulate the landslide position along the hillslopes. As a result the observation of landslide clustering on topographic ridges cannot be used as a definite indicator of the topographic amplification of ground shaking

    Physicochemical Stability of 5 mg/mL Pediatric Prednisone Oral Suspension in Syrspend¼ SF PH4

    No full text
    Prednisone is a corticosteroid used in several inflammatory diseases and cancers. In France, no available prednisone drinkable formulation exists. Instead, an oral syrup of prednisone with ethanol, sodium benzoate and simple syrup is produced. However, sodium benzoate can induce neonatal icterus and alcohol is not authorized for children below 3 years of age. The aim of this study was to determine the stability of 5 mg/mL prednisone oral suspension in a commercial compounding excipient: Syrspend¼ SF PH4
    • 

    corecore